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Letter from the author

This atlas was compiled as part of my master's thesis ‘Flood Vulnerability in
Punjab, Pakistan: A Geospatial Analysis and Cartographic Approach’.

Floods are one of the most severe catastrophic events, demanding human lives,
leading to displacement, and the destruction of homes, infrastructure, and
livelihoods. Climate change exacerbates the frequency and intensity of such
hazards - not only floods, but also others, such as droughts, sea level rise, and
wildfires.

While climate change is a global issue, it mainly affects the Global South. Millions
of people are already forced to migrate due to hunger, conflict, and environmental
collapse. Everyone has the right to a safe, dignified life - something many of us
take for granted because of the privileges we have been given.

| believe climate change is one of the greatest challenges of our era - and we are
running out of time. One of the barriers we face is the narrow-mindedness, denail,
and indifference, especially those who think they are not affected. But we are all
connected, and the suffering of others is not something we can afford to ignore.

The geospatial analysis was conducted, maps were created, and the atlas was
compiled to support flood mitigation in Punjab, Pakistan, but also to raise
awareness of climate impacts globally, through the lens of flooding. My hope is
that it fosters understanding, empathy, and action.

Let us stop thinking only of ourselves, and instead be open to others - regardless
of where they come from, their ethnicity, impairment, gender, sexual orientation,
religion, or any other characteristics that make them who they are. We all share

this planet, and we must care for it - and for each other - together.

Gernot Nikolaus
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Introduction

Flooding is one of the greatest dangers globally,
which not only destroys infrastructure and
damages the economy, but also claims human lives
(Bates et al., 2008; Kundzewicz et al., 2014
Rentschler, Salhab and Jafino, 2022; Chen etal.,
2024). Pakistan, especially the Punjab region, is
affected frequently by floods, due to its high
population density, agricultural activities, and the
presence of five major rivers (Rahman et al., 2017;
Waseem and Rana, 2023; Chen et al,, 2024).
Yearly flood events are exacerbated by climate
change (Aldous et al., 2011; Arnell and Gosling,
2013; Kundzewicz et al., 2014 Youssef et al.,
2021) thus demanding for effective flood
assessments and effective mitigation strategies.

To address flooding globally, researchers have
turned to flooding models in combining remote
sensing data, Geographical Information System
(GIS) techniques, and various flood drivers, to
assess the flood challenge in a study area (Gigovic
etal, 2017; Hoque et al., 2019; Burayu,
Karuppannan and Shuniye, 2023; Hossain and
Mumu, 2024; Ibrahim et al., 2024; Roy and Dhar,
2024; Ullah et al., 2024). While remote sensing
provides important data about topographic
conditions, the GIS environment gives the
opportunity to store and process this data.
Depending on the study and the area, different
parameters are chosen and their influence on the
study's model is determined.

The flood danger and the large number of people
affected in the Punjab province was the motivation
for this study. Although global research on flooding
exists, only a few studies concentrate on Pakistan,
and fewer on the highly affected Punjab region.
Studies in Punjab mainly focus on the assessment
of areas that are prone to floods and where flooding
oceurs, but the population is not taken into account.

As flood events not only affect the landscape, but
also communities, it is important to investigate
flooding from a multi-dimensional perspective.
Such a perspective is used in this master's thesis
by developing a flood vulnerability framework. This
framework consists of three components which are
used to highlight areas most vulnerable to flooding.
While one component considers physical and
environmental factors, the others reflect the
affected population. Another motivation lies in the
mapping of the results. Recognizing that good
visualizations, which effectively communicate the
results, are missing in existing flood research, this
study also focuses on creating visually appealing
maps. Different mapping techniques are developed
and evaluated in user testing to come to a
visualization which works for different users.

All results of the master's thesis are compiled into
this atas, making the outcomes tangible and
accessible not only for informing a decision but also
for the general or local population.

O]
. 1=

L

ﬁ'—?ﬁf_@ The full thesis text ca be
E =k accessed via the QR code
or at https://gernotnikolaus.github.io/

MasterThesis_FloodVulnerabilityPunjab. The digital
version of the atlas is also available there.
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How to Read

This atlas presents a geospatial analysis of flood
vulnerability in Punjab, Pakistan. It is designed for
both academic and dessicion-makers, as well as
the general public.

The atlas is divided into thematic sections
corresponding to the components of the analysis:
Flood-Prone Component (FPC), Population
Susceptibility Component (PSC), Coping Capacity

Seeing this symbol, the text
provides more detailed information,
how the map, or the parameter was
processed.

Seeing this symbol, the text
provides more information of the
results of the analysis.

After each parameter within a component is
discussed, the respective component maps is
presented in detail. This includes visualizations
using administrative boundaries, along with a table
identifying which districts are most affected (e.g.,
Figure 1.2).

At the end of the atlas, the overall Flood
Vulnerability Index (FVI) is visualized through
various cartographic approaches, including
ageregation, interpolation, and separate
visualizations of each component (e.g., Figure 1.3).

Coping Capacity Component t fetsil evel

(g 23] enpastrs .

Component (CCC), and the Flood Vulnerability
Index (FVI). Each components has its own
parameters which are analyzed, discussed, and
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Seeing this symbol, the text
provides a quick summary of the

presented in maps and figures (Figure 1.1). ) e B A e e e
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Figure 1.1: Analysis of the Annual Rainfall parameter. Figure 1.3: Values of the AR in the study area.
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Flood Vulnerability

Floods are among the most severe disasters,
affecting millions of people every year. In countries
like Pakistan, where large populations live near
rivers and fertile floodplains, the threat is especially
high. As climate change continues to alter weather
patterns, flood events are becoming more frequent
and intense: and putting vulnerable communities at
even greater risk.

This atlas aims to visualize and analyze flood
vulnerability in Punjab, Pakistan, using a geospatial
and cartographic approach. By combining scientific
data with intuitive maps, the goal is to support
better decision-making, improve awareness, and
contribute to long-term flood mitigation efforts.

Flooding is one of the most widespread hazards,
occurring across various regions and time periods,
and affecting large populations worldwide (Bates et
al., 2008; Kundzewicz et al., 2014 Bathrellos et
al., 2018; Rentschler, Salhab and Jafino, 2022).
Floods are a physical phenomenon; when rivers
overtop their banks, water flows into the floodplain,
which is favored for settlements because they are
fertile and near water, thereby increasing the
likelihood of flood-related disasters (Bathrellos et
al., 2018). According to Rentschler, Salhab and
Jafino (2022), 23% of the population worldwide is
exposed to floodwaters exceeding 0.15 meters in
depth. The majority of those exposed reside in
South and East Asia, where 1.24 billion people live
in areas at risk. Moreover, climate change has an
impact and influence on floods, increasing both the
intensity as well as the occurrence of flooding
(Aldous et al., 2011; Arnell and Gosling, 2013;
Kundzewicz et al., 2014 Youssef et al., 2021).
According to Bates et al. (2008) flooding is
influenced by various climate factors, such as
precipitation and temperature patterns.
Additionally, drainage also plays a significant role,

as well as urbanization, and the presence of flood
management structures like dams or reservoirs.

Floods pose a significant risk to both lives and
livelihoods, particularly for vulnerable communities
(Rentschler, Salhab and Jafino (2022).
Vulnerability is a crucial component in risk
management and damage assessment (Connor and
Hiroki, 2005; Huang et al., 2012). However, the
definition is not fixed: different definitions of the
term Vulnerability' appear in literature, as well as
different concepts of it have been created (IPCC,
2012; Nasiri, Mohd Yusof and Ali, 2016).
Furthermore, its meaning evolved over time. For
example, the IPCC Third Assessment Report
defines vulnerability as a function of exposure,
sensitivity, and adaptive capacity (IPCC, 2001).
Then, the Fifth Assessment Report redefined the
vulnerability's definition and excluded exposure
from it (IPCC, 2014). Since then, vulnerability is
seen as a function of sensitivity and the capacity to
cope and adapt (IPCC, 2022). According to Proag
(2014), vulnerability is “the degree to which a
system, or part of a system, may react adversely
during the occurrence of a hazardous event”. For
UNDP (2004) human vulnerability is the “human

condition or process resulting from physical, social,

economic and environmental factors, which
determine the likelihood and scale of damage from
the impact of a given hazard”, Balica and Wright
(2010) define vulnerability as the interaction
between exposure, susceptibility, and resilience of
each community in risk conditions. Nasiri et al.
(2016) state that a human system is vulnerable to
these three factors. Furthermore, several studies
define vulnerability as a function of exposure,
sensitivity, and adaptive capacity (Balica and
Wright, 2009; Thomas et al., 2018). Additionally,
some studies equate sensitivity with susceptibility
(Nasiri, Mohd Yusof and Ali, 2016; Padhan and

Madheswaran, 2023), and capacity with resilience
or adaptive capacity (Balica, Douben and Wright,
2009; Padhan and Madheswaran, 2023).

Several terms appear during the definition of
vulnerability: exposure, sensitivity, and capacity.
The UNDRR defines exposure as the “situation of
people, infrastructure, housing, production
capacities and other tangible human assets located
in hazard-prone areas” (UNDRR, 2009). Other
studies defined it as the chance that people and/or
physical items will be affected by floods (Padhan
and Madheswaran, 2023). Sensitivity is the
“extent to which an element of the system is
exposed which in turn influences the chance of
being harmed at the time of occurrence of flooding
events” (IPCC, 2001). Resilience is defined as “the
capacity of a system, community or society to
resist or to change in order that it may obtain an
acceptable level in functioning and structure.”
(UNDP, 2004).

Methodologies in Flood Vulnerabhility Assessment

The assessments of flood

vulnerability have become

increasingly important in
understanding and mitigating flood risks. While
different approaches for assessing flood risk exist,
such as hydrologic and hydraulic modeling, as well
as the use of artificial intelligence and machine
learning (Kumar et al., 2023), the use of
Geographic Information Systems (GIS), remote
sensing (RS), and Multi-Criteria Decision Analysis
(MCDA) provides an approach to evaluating both,
the spatial extent and the vulnerability of a
population to flooding events, as proven in several
studies (Gigovic et al., 2017; Hoque et al., 2019;
Burayu, Karuppannan and Shuniye, 2023; Hossain
and Mumu, 2024; lbrahim et al., 2024; Roy and
Dhar, 2024; Ullah et al., 2024).

GIS and remote sensing data have become
important tools for flood disaster monitoring and
management (Kabenge et al., 2017). GIS provides a
framework for integrating, analyzing, and
visualizing spatial data, such as data on
topography, land use, precipitation, river networks,
and historical flood records (Kabenge et al., 2017;
Hoque et al., 2019; Ullah et al., 2024). While
satellite imagery may be used to identify flood-
prone areas and to evaluate flood extents (Kabenge
etal, 2017), with digital elevation models (DEM),
derived from remote sensing, areas where flooding
most likely occurs during flooding events can be
identified (Coveney and Roberts, 2017). According
to Kumar et al. (2023), generally, the steps of a
remote sensing and GIS-based flooding model exist
of the following: data acquisition, preprocessing,
flood modeling, and forecasting future floods. First,
the data for the respective studies required is
gathered, remote sensing data preprocessed, e.g.,
radiometric calibration, as well as the data
processed in the GIS environment, e.g., geo-

referenced. With image analysis methods, such as
thresholding or image segmentation, floods are
detected, and affected areas are identified. Flood
maps are developed to draw a picture of the range
and intensity of flooding. This flood mapping
technique helps to identify flood-prone areas and to
create strategies for flood mitigation (Sanders et
al, 2020). To enhance the model’s accuracy, their
input parameters are calibrated (Jahandideh-
Tehrani et al., 2020). Using data from field
observation or other data sources, the flooding
mapping results are validated, to improve their
accuracy further (Molinari et al., 2019), ensuring
that the models represent real-world flood events,
and are able to predict future floods and provide
early warnings to vulnerable populations (Kumar et
al, 2023).

The Multi-Criteria Decision Analysis (MCDA) is a
method that helps decision-makers to make well-
informed decisions when dealing with complex
criteria (Evers, Almoradie and de Brito, 2018). The
combination of MCDA and GIS has become
increasingly popular for evaluating different factors
in flood modeling (Hossain and Mumu, 2024); one
widely used MCDA technique is the Analytical
Hierarchy Process (AHP) as shown in several
studies (Hoque et al., 2019; Aydin and Sevgi
Birincioglu, 2022; Burayu, Karuppannan and
Shuniye, 2023: Kara and Singh, 2024; Ullah et al,,
2024; Zhran et al., 2024). The AHP method
involves breaking down the flood problem into a
hierarchy of parameters and then conducting
pairwise comparisons among them. Through expert
judgment, relative weights are assigned to each
criterion, which reflects their importance in
influencing flooding. According to Ouma and
Tateishi (2014) the AHP consists of four steps:
creating the decision hierarchy, determining the
relative importance of factors, calculating their

weighting, and checking the consistency with the
consistency ratio.

According to Kumar et al. (2023), future flood
models that leverage remote sensing data and GIS
hold great potential in analyzing and managing
flood risk more effectively. The quality and
availability of geospatial data are increasing,
making it possible for better flood modeling. The
combination of GIS and AHP offers advantages,
particularly in flood vulnerability analysis. GIS
enables the calculation of parameters. At the same
time, AHP allows for prioritizing these factors
(Ouma and Tateishi, 2014).
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Study Area

The study area - Punjab, Pakistan - is one of the
five provinces of Pakistan (Map 1.1). According to
the Pakistan Bureau of Statistic (PBS), almost 130 A Rawalpindi
million people live in the region. Although it is not

the largest region, it is the most populated one in

RAW
Pakistan (PBS, 2023). The region spans an area of d
205,345 km? and borders India on the eastern
side. The PBS divides the province in their census
into 36 districts, as well as 146 Tehsils; these are
;

the administrative regions below the district level.
The presence of the five major rivers - Indus,
Jhelum, Chenab, Ravi as well as Sutlej - has made
Punjab an agricultural center of the country, but
prone to catastrophic flooding (Rahman et al.,
2017).

/7 o
7

P

77’ BordertoIndia
[T District
() Tehsil

——=—Major River
@  Major City
LAH  District Name

Flood risk and vulnerability are a central concern in
the province. According to Rentschler et al.
(2022), Pakistan is among the top ten countries
where the population is exposed to high flood risk.
In particular, the Punjab region is in third place
among the subnational administrative areas with
the highest absolute number exposed to floods:
38% of the population lives in high-risk flood
70N€S.

Map 1.1: Study Area Punjab. 1 ;.' |

77 Border to India
(] District
@ Tehsil

B 2022 Flood
@  Major City
LAH  District Name

2022 was the severest flood
(Map 1.2) since the 2010 flooding
(Waseem and Rana, 2023), affecting
33 million people (WFP, 2024).

Almost every three years Pakistan is hit by flood
events; between 1950 and 2021 around 21
extreme flood events occurred in the country
(Waseem and Rana, 2023). The monsoon season is
from June to September and brings severe rainfall
(Latif and He, 2025). In the last three years, the
average monsoon rainfall was above average (PMD,
2024). This is also reflected in the flood severity,
the last year's floods, in 2024, caused 94 lives in
Punjab, among them 46 children, while 238 got
injured, including 86 children (Islamic Relief,
2024).

Map 1.2: Extent of the 2022 Flood in Punjab. : - e

15



The Flood Vulnerability Index

Different datasets were used for the different
parameters used in this study (Table 1.1).
PERSIANN-CSS (Precipitation Estimation from
Remotely Sensed Information using Artificial
Neural Networks - Cloud Classification System)
data was used for the Annual Rainfall, downloaded

downloaded provided by the Humanitarian
OpenStreetMap Team via the Humanitarian Data
Exchange portal (HDX, no date a); the same applies
to the river stream data (HDX, no date b). The
census data of 2023 was accessed at the Pakistan
Bureau of Statistics website (PBS, 2023), and

The different criteria were selected based on the
literature review, studies as well as consulting with
experts (Table 1.2). As literature has shown that
flood vulnerability is a multidimensional concept
that includes environmental, demographic, and
socioeconomic factors, a Flood Vulnerability Index

components together, or visualizing them
separately, to determine effective ways to
represent flood vulnerability.

Flood-Prone
Component

via the CHRS data portal (CHRS, no date). The downloaded as PDFs. (FVI) was compiled, using three parts (Figure 1.4): ( PC]
Drainage Density, Elevation, Slope, and Flood-Prone Component (FPC), Population
Topographic Wetness Index were obtained from the Susceptibility Component (PSC), and Coping
FABDEM (Forest And Buildings removed Capacity Component (CCC).
Copernicus 30m DEM). FABDEM is a product rom FLOOD
the Copernicus GLO 30 Digital Elevation Model This framework explicitly incorporates human VULNERABILITY
(DEM), delivering a resolution of 1arc-second grid vulnerability factors to flood-prone parameters, INDEX (FV |)
spacing (approximately 30m at the equator), ensuring a holistic perspective on flood impacts. Pooulation Copin
whereas errors of buildings and vegetation were Furthermore, recognizing the ack of Su S(Peptihility Gapgci%y
removed (Hawker et al., 2022). The WorldCover communication, this study employs mapping Component Component
V2 2021 was used for the Land Use Land Cover approaches that prioritize clarity and usability. (PSC) (CCC)
(Zanaga et al,, 2022). Health facilities were Based on user testing, different visualization
techniques were evluated, merging the thee Figure 1.4: Flood Vulnerability Index and its components.

Table 1.1: Data sources. Table 1.2: Parameters of the components.
Data Type Output Criteria Data Source Period, Time, Version Resolution Components of FVI Criteria
Sentinel-1 Previous Flood for validation Google Earth Engine 2021-2024 10m o
ESA WorldCover 10m Land Use Land Cover WorldCover 2021 10m
FABDEM (Forest And Buildings removed Copernicus DEM)  Drainage Density, Elevation, Slope, TWI Google Earh Engine 2023 30m
OpenStreetMap Distance to river HOT 0SM Modified: 8 January 2025 0.04° x 0.04°
PERSIANN-CCS Annual Rainfall CHRS 2015-2023 (4km)
Census Dependent Population, Disabled Population, Female Population  Pakistan Bureau of Statistics 2023 Admin3 (Tehsil)

Population Density, Literacy Rate
OpenStreetMap Distance to Health Facilities HOT OSM Modified: 8 January 2025 Lat., Long - upulatinn e

Coping Capacity CDponent (cce)
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Flood-Prone Component

Annual Rainfall

Distance to the River

Drainage Density

Elevation

Land Use Land Cover

Slope

Topographic Wetness Index
Flood-Prone Component

Flood-Prone Component at Tehsil level

(One component of the Flood

Vulnerability Index (FVI) Model is the

Flood-Prone Component (FPC). As
vulnerability is determined by physical and natural
factors (Hoque et al., 2019), the FPC represents
the physical and environmental factors influencing
flood occurrence. According to (Ullah et al., 2024),
the mapping of flood-prone areas is a crucial
method for flood management and risk reduction
planning, as it helps in generating more effective
results. To assess the exposure of the study area to
flooding, seven environmental and hydrological
parameters were integrated that influence the
occurrence of floods (Table 1.2): Annual Rainfall
(AR), which represents the precipitation of rainfall,
considering that more extreme rainfall is a driver of
flooding (Bathrellos et al., 2016: Kara and Singh,
2024); the Distance to the River (DR) which is the
proximity to channels influencing flood-prone

(Ferndndez and Lutz, 2010); the Drainage Density
(DD) measures the extent of drainage networks
affecting runoff concentration and therefore with
higher drainage to a higher flooding (Subbarayan
and Saravanan, 2020); the Elevation (EL) as lower
elevation experiences higher flood risk (Sanyal and
Lu, 2006; Rahman et al., 2019; Allafta and Opp,
2021): the Land Use Land Cover (LULC) -
classifying objects, such as buildings, vegetation,
and cropland - determining surface permeability
and potential water retention capacity (Price,
Jackson and Parker, 2010; Owuor et al,, 2016:
Mojaddadi et al., 2017; Ogato et al., 2020a; Allafta
and Opp, 2021; Chen et al,, 2024; Ullah et al.,
2024); the Slope (SL) as flat surfaces are more at
risk (Gigovi¢ et al., 2017); and the Topographic
Wetness Index (TWI) quantifies the topography and
soil moisture (Roy and Dhar, 2024).
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Annual Rainfall

More extreme rainfall is considered

to cause flood events (Bathrellos et

al,, 2016: Kara and Singh, 2024).
The precipitation data in the study area ranged
from 269.35 mm/year to 1037.09 mm/year, with
amean of 558.01 mm/year and a standard
deviation (SD) of 145.84 mm/year. The data was
classified using the Natural Breaks (Jenks), as this
method minimizes variances within classes, and
maximizes variances between classes (esri, no date
a), making it suitable for moderately skewed data
distribution in the annual rainfall data set. After
applying the interval, the classes were slightly
adjusted for better interpretation. The Annual
Rainfall (AR) layer of the study area was divided
into five classes: < 400 mm/year (very low), 400-
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Figure 2.1: Distribution of Annual Rainfall classes by area

(km?).

PERSIANN-CSS data were

downloaded as yearly rainfall from

each year 2015 to 2023 via the
CHRS data portal. These nine data sets were
loaded into ArcGIS Pro and reprojected with
‘Project Raster’. As a resampling technique, the
Bilinear interpolation was used; as the technique is
preferred for continued data (esri, no date f). The
average Annual Rainfall (AR) was calculated with
the Raster Calculator by adding all rasters

Most of the AR occurs in the northern and the

southwestern part of Punjab, while the lowest can
be found in the center of
the province (Map 2.2).

500 mm/year (low), 500-600 mm/year
(moderate), 600-700 mm/year (high), and > 700
mm/year (very high).

The classification shows that 15.46%
(31,795.92 km?) of the study area falls
very low, 26.94% (55,411.50 km?)
is low, 19.23% (39,557.46 km?)
is moderate, 17.22% (35,427.93
km2) is high, and 21.15%
(43,504.21km?) is very high
(Figure 2.1, Map 2.1).

Ipindi
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Map 2.1: Annual Rainfall classes distribution in the study area.

together and dividing by their number. The ‘Raster
To Points’ tool was used for the Kriging’ tool.
According to Hogue et al. (2019), the kriging
interpolation is a common method for interpolating
precipitation data sets.

Annual Rainfall (AR) was calculated

using PERSIANN-CSS data from

2015-2023. Kriging interpolation
was applied to create a continuous surface. AR
ranged from 269.35 mm/year to 1037.09
mm/year (mean: 558.01 mm/year; SD: 145.84
mm/year). Using Natural Breaks (Jenks), the data
was classified into five categories: very low (< 400
mm), low (400-500 mm), moderate (500-600
mm), high (600-700 mm), and very high (> 700
mm). Most rainfall occurs in the north and
southwest, with drier areas in the center of Punja
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Map 2.2: Annual Rainfall values across the study area.
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Distance to the River

The Distance to the River (DR)

ranged from 0 m to 86,103.05 m,

with a mean of 5657.92 m, and a SD
0f10,351.99 m, indicating very skewed data in the
lower distance. The dataset was classified on
intervals with manual classes, in accordance with
other literature (Hoque et al., 2019; Ullah et al.,
2024). A closer distance to waterbodies means
higher risk (Ferndndez and Lutz, 2010), the
distance to the river layer was classified into five
groups: <1000 m (very low), 1000-3000 m
(low), 3000-6000 m (moderate), 6000-10,000
m (high), > 10,000 m (very high).

12.75% (26,222.92 km?) of the study area is very
low, 8.62% (17,728.13 km?) is low DR, 18.56%
(38,177.38 km?) is moderate, 31.65% (65,109.38
km?) is high, and 28.42% (58,459.22 km?) very
high (Figure 2.2, Map 2.3).
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Figure 2.2: Distribution of Distance to the River classes by

area (km?).

River and drainage channel data

were used to calculate the proximity

of the Distance to the River (DR)
laer, in accordance with a study by Ghorbani et al.
(2015). The distance to the river layer was

The higher classes can be found as a result of the
five major rivers, and additionally a lot of channels
and streams, especially in crop field areas. These
areas are mostly in the northeastern and
southwestern parts of the region, which are
characterized by farmland (Map 2.4).

Map 2.3: Distance to the River classes distribution in the study area.

calculated with Distance Accumulation’,
calculating the distance for each cell in the raster
to the input layer (esri, no date b). After calculation,
the layer was clipped to the study area.

B Very low
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Moderat
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® Major City

Distance to the River (DR) was

calculated using OSM river and

drainage data via the ‘Distance
Accumulation' tool. The distances ranged from 0 to
86,103.05m (mean: 5657.92 m; SD:
10,351.99m), showing a skew toward smaller
distances. Based on literature, the data was
manually classified into five risk levels: very low
(<1000m), low (1000-3000m), moderate
(3000-6000m), high (6000-10,000m), and
very high (>10,000m). The highest risk zones are
closest to rivers and concentrated in the northeast

_(

Map 2.4: Values of Distance to the River in the study area.
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Drainage Density

Higher drainage leads to higher

surface runoff (Subbarayan and

Saravanan, 2020). The Drainage
Density (DD) values ranged from 0 to 122.07
m/km?, with a mean of 31.29 m/km? and a SD of
26.99 m/km?. This indicated a skewed distribution
towards lower density values; therefore, to ensure
halanced classification and meaningful
differentiation across the areas, the quantile
method was used. This interval method classifies
the data into equal-sized categories (esri, no date
a), addressing skewness in the distribution and
making meaningful flood vulnerability levels. For
better understanding and interpretation, the values
were slightly rounded. The DD in the study area
was divided into five classes: < 6.34 m/km? (very
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Figure 2.3: Distribution of Drainage Density classes by
area (km?).

The Drainage Density is calculated
with the equation below (Hossain and
Mumu, 2024).

_ total length of drainage channels

DD total area

The Elevation (EL) profile, which was created for
the elevation map as described below was used in
the calculation process. The DEM was filled with
‘Fill", and then the ‘Flow Direction’ and the ‘Flow

low), 6.34-27.76 m/km? (low), 27.76-39.25 The DD layer captures mostly the five major river
m/km? (moderate), 39.25-56.96 m/km? (high), > basins (Map 2.6).
56.96 m/km? (very high).

The classification describes 29.75% (61,193.51
km?) of the study area as very low,
15.00% (30,849.03 km?) as low,
18.43% (37,918.43 km?) as
moderate, 18.61% (38,285.65
km?) as high, and 18.21%
(37.450.41 km?) as very high
(Figure 2.3, Map 2.5).
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Map 2.5: Distribution of Drainage Density classes in the study area.

Accumulation” were run. With the ‘Raster
Calculator Tool', equal or greater than 1% of the
highest value of the Flow Accumulation layer is
extracted and saved into a new layer. Then, the
‘Stream Order' and the ‘Stream to Feature’ are
executed. Finally, the ‘Line Density’ tool was
executed.

Using processed DEM data, drainage

features were extracted and

converted into line density. Drainage
Density (DD) values ranged from 0 to
122.07m/km? (mean: 31.29 m/km?; SD:
26.99m/km?). Classified using quantiles, the five
categories are: very low (<6.34), low (6.34-
21.16), moderate (27.76-39.25), high (39.25-
56.96), and very high (>56.96 m/km?). High DD,
associated with higher runoff potential, is mainly
found in the five major river basins.

Map 2.6: Drainage Density values across the study area.
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Elevation

The Elevation (EL) ranged from

68.50 t0 2323.25 m above sea

level, with a mean elevation of 222 m
and a standard deviation of 193.60 m. Indicating
very skewed data in the low elevation. Low-
elevated regions are at a higher flood risk (Sanyal
and Lu, 2006: Rahman et al., 2019; Allafta and
Opp, 2021). The values were manually classified
into five classes, focusing on low elevation ranges:
<150 m (very high), 150-200 m (high), 200-
300 m (moderate), 300-400 m (low), and > 400
m (very low).
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Figure 2.4: Distribution of Elevation classes by area (km?).

The FABDEM data was loaded into

Google Earth Engine, clipped to the

study area, projected on the CRS,
and loaded into the GIS environment.

Map 2.7: Distribution of Elevation classes in the study area.

The classification describes 11.27% (23,179.51
km?) of the study area as very low, 3.88%
(7990.26 km?) as low, 15.04% (30,937.53 km?)
as moderate, 30.18% (62,085.42 km?) as high,
and 39.62% (81,504.31 km?) as very high (Figure
2.4 Map 2.7)

The northern and the southwestern parts of Punjab
are characterized by high elevation, while the
center is low elevated (Map 2.8).

Elevation (EL) was derived from

FABDEM and processed in GEE and

GIS. Values range from 68.5 o
2323.25m, with a mean of 222m and skewed
distribution toward lower elevations. Since lower
elevations are more flood-prone, the data was
manually classified into five classes: very high
flood risk (<150m), high (150-200 m), moderate
(200-300m), low (300-400m), and very low
(>400m). Most low-lying areas are in central
Punjab, while elevated regions are in the north and
southwest.
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Land Use Land Cover

« |, Thegiven WorldCover layer is
= ' = classified into tree cover, shrubland,

7= grassland, cropland, built-up, bare/
sparse vegetation, permanent waterbodies, and
herbaceous wetland. According to Ogato et al.
(2020), waterbodies are at a very high and built-
up areas are at a high flood risk. Since more than
half of floods in 2022 in Pakistan were cropland
(Chen et al., 2024), cropland has been classified as
highly vulnerable to flooding in this study.
Furthermore, bare land is at a moderate risk, as
precipitation hits the bare ground (Allafta and Opp,
2021), resulting in a higher risk of flood and runoff
(Owuor et al., 2016), as the rain might lead to the
formation of a surface crust reducing the
infiltration and hydraulic conductivity (Price,
Jackson and Parker, 2010). Vegetation is less
vulnerable, as it can store water for a period of time
(Ullah et al.,, 2024), and its negative correlation
hetween vegetation density and flooding
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Figure 2.5: Distribution of Land Use Land Cover classes by

area (km?).

For the Land Use Land Cover (LULC)

layer, the WorldCover V2 2021 was

used (Zanaga et al., 2022). The
different tiles covering the study area were
downloaded from the ESA WorldCover Viewer and

(Mojaddadi et al., 2017). Less vulnerability also
applies to shrublands, due to their high roughness
and seepage rates (Allafta and Opp, 2021).
Considering this information, the LULC layer was
classified into five classes, water bodies,
herbaceous wetland (very high), built-up, cropland
(high), bare/sparse vegetation (moderate),
grassland (low), shrubland, and tree cover (very
low).

The classification describes 14.91%
(30,662.53 km?) of the study area
asvery low, 4.62% (9,495.62
km?) as low, 21.62% (44,460.48
km?) as moderate, 57.54%
(118,358.67 km?) as high, and
1.32% (2,719.73 km?) as
very high (Figure 2.5,
Map 2.9).

Map 2.9: Distribution of Land Use Land Cover classes in

the study area.

loaded into ArcGIS Pro. While reprojecting the files
to the used GRS in this study with the Project
Raster tool, the cell size was resampled to 30m. As
a resampling technique, the Nearest Neighbor was
used, as this is best for discrete data (esri, no date

As Punjab is an agricultural center of the country
most of the provinces are covered with cropland.
Shrubland and base/sparse vegetation can be found
in the southeastern and -western parts, as well as
in one center area in the north-western direction.
Trees are mostly in the northern part, at high
elevation. Built-up areas can mostly be found in the
major cities (Map 2.10.

alpindi
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® Maijor City

f). After the ‘Mosaic to New Raster' tool merged all
the tiles into one, the layer was clipped to the study
area, all while ensuring that the output was
snapped correctly.

The Land Use Land Cover layer

(LULC) was derived from WorldCover

V2 2021 data. The final classification
includes tree cover, shrubland, grassland, cropland,
built-up areas, bare/sparse vegetation, water
bodies, and herbaceous wetlands. Based on flood
vulnerability, water bodies and wetlands are very
high risk, built-up areas and cropland are high risk,
bare/sparse vegetation is moderate risk, and
vegetation (trees, shrubland, and grassland) is less
vulnerable. In Punjab, cropland dominates the
landscape, while shrubland and bare/sparse
vegetation occur in the southern, eastern, and
western parts, tree cover is found mainly in the
elevated northern region, and built-up
areas are concentrated around
major cities. Overall, the
classification indicates that
14.91% of the area is very
low risk, 4.62% is low
risk, 21.62%is
moderate risk, 57.54%
is high risk, and
1.32% is very
high risk.

Map 2.10: Land Use Land Cover values across the study
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Slope

Slope (SL) plays an important role in

the rate and duration of water flow

(Ogato et al.,, 2020a). Flatter
surfaces have a higher risk, as water moves slower,
collects longer, and builds up (Gigovic et al., 2017).
The slope ranged from 0° to 75.50°, with a mean
0f 1.56°, and a standard deviation of 4.72°. Natural
breaks were chosen as classification intervals and
slightly manually adjusted, for better interpretation
and readability. Given the skewed data in the lower
slope areas, as well as the fact that flat areas are at
higher risk, the focus was set on shallow areas. The
slope layer was classified into five classes: <1.5°
(very high), 1.5°-5° (high), 5°-15° (moderate),
15°-30° (low), > 30° (very low).
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Figure 2.6: Distribution of Slope classes by area (km?).

Slope (SL) was created with the

FABDEM data in ArcGIS Pro. With

'Fill’ artificial sinks were removed
(esri, no date c). Degrees were used as the output
measurement, and the geodesic method for

According to the classification, 0.59% (1213.16 High degrees of SL can be found in the Slope (SL) was derived from FABDEM

km?) of the study area falls in very low, 2.59% mountainous areas of the province, while low using ArcGIS Pro, calculated in - <A |
(5333.28 km?) in low, 4.52% (9298.84 km?) in degrees are in the flat land (Map 2.12). degrees with the geodesic method for . Lo\ A Rawalpindi
moderate, 7.63% (15,702.85 km?) in high, and higher accuracy over large areas. Since flatter

84.66% (174,148.89 km?) in very high classes areas increase flood risk due to slower water

(Figure 2.6, Map 2.11). movement, classification emphasized low-slope

values. The slope ranged from 0° to 75.5°, with a
mean of 1.56°. Using Natural Breaks (manually
refined), it was classified into five categories: very
high risk (<1.5°), high (1.5°-5°), moderate (5°-
15°), low (15°-30°), and very low (>30°). Most of
the study area (84.66%) falls in the very high-risk
category, indicating predominantly flat terrain,
especially in the central and southern regions.
Steeper slopes are found in the
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Map 2.11: Distribution of Slope classes in the study area.

calculation, as this will give a more precise output max: /5.5
on a larger region (esri, no date g). -15-30-

Map 2.12: Slope values across the study area. L ;o
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Topographic Wetness Index

The Topographic Wetness Index

(TWI) ranged from -1.35 to 34.55,

with a mean of /.88, and a standard
deviation of 3.69. TWI quantifies the topography of
hydrological processes and the variability in terrain
in soil moisture. While the index does not have a
unit, higher values mean a higher potential for
flooding (Roy and Dhar, 2024). By using quantiles,
each class represents a reasonable distribution of
the values, from minimal water retention to higher
water accumulation. The values were slightly
rounded for better interpretation. The layer was
classified into five classes: < 5.12 (very low), 5.12-
6.67 (low), 6.67-7.94 (moderate), 7.94-10.75
(high),>10.75 (very high).

& ® 3 N

Figure 2.7: Distribution of Topographic Wetness Index
classes by area (km?).
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The Topographic Wetness Index

(TWI) quantified the topography of

hydrological processes and the
variability in terrain in soil moisture (Roy and Dhar,
2024). The layer TWI was created with the
FABDEM data in ArcGIS Pro. First, the layer was
filled with the Fill tool, to remove sinks or
depression which could cause errors in the flow of
water. Then, the Flow Direction tool was run to
create the flow direction for each raster cell (esri,

The classification describes 19.49% (40,093.62
km?) of the study area as very low, 19.88%
(40,900.81 km?) as low, 21.94% (45,128.56
km?) as moderate, 20.07% (41,283.85 km?) as
high, and 18.61% (38.290.19 km?) as very
high (Figure 2.7, Map 2.13).

X

Higher TW! values can be found at
waterbodies and rivers, while
lower are in the higher elevated
areas of the province

(Map 2.14).

Map 2.13: Distribution of Topographic Wetness Index classes

in the study area.

no date e), followed by the Flow Accumulation tool
(esri, no date d). Then the tangent of the new slope
radians layer was calculated again with the Raster
Calculator. Finally, the Topographic Wetness Index
was calculated with the equation below (Beven and
Kirkby, 1979),
a

iAis (tan(b))
where a is the flow accumulationand b is the
slope in radians (Roy and Dhar, 2024). While the

® MajorCity | Low
Moderat

I High

index does not have a unit, higher values mean a

higher potential for flooding (Roy and Dhar, 2024).
In the end, the raster was clipped to the study area.

All steps ensured, creating the layers on the snap
raster.
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Topographic Wetness Index (TWI)

was calculated using FABDEM data to

assess soil moisture variability and
flood potential. The process included filling sinks,
generating flow direction and accumulation, and
applying the TWI formula. The index, ranging from
-1.35to 34.55, was classified into five quantile-
based classes, from very low to very high wetness.
Higher TWI values, indicating greater flood
potential, were mainly found near waterbodies and
rivers, while lower values appeared in elevated
areas.

Map 2.14: Topographic Wetness Index values across the study area.
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Flood-Prone Component

Using the parameters and the

respective weights derived from the

AHP, the overlay analysis generated
the Flood-Prane Component (FPC) Map. The output
of the FPC ranged from 1 (very low flood-prone) to
5 (very high flood-prone); while 8.22%
(16,889.62 km?) in low, 48.74% (100,266.5
km?) in moderate, 42.72% (87,882.86 km?) in
high, and 0.32% (654.96 km?) is very high flood-
prone areas in the study area in the FPC pixel map
(Figure 2.8, Map 2.15).

The validation of the FPC showed that the previous
flood occurred in 71.22% of very high and high
vulnerability classified areas; 26.47% were in the

The Flood-Prone Component (FPC)

was assessed using the Analytical

Hierarchy Process (AHP) to
determine the relative importance of seven key
parameters: annual rainfall (AR), distance to river
(DR), drainage density (DD), elevation (EL), land
use land cover (LULC), slope (SL), and topographic
wetness index (TWI). This technique, commonly
used in flood vulnerability studies, involves expert
judgment and a structured pairwise comparison
method based on Saaty's 1-9 importance scale.

A survey was conducted to gather expert opinions,
including responses from eight professionals in
Pakistan and five climate risk analysts from the
United Nations University - Institute for

Table 2.1: Pairwise comparison matrix for FPC.

moderate vulnerability class, while 2.31% were in
the low vulnerability class.

The results indicate that almost half of the study
area falls within the moderate flood-prone
category, while a smaller portion of ~43% is
classified as high and very high. This confirmed the
high flood of catastrophic susceptibilities in the
Punjab region. The high classes can especially be
found near river basins, characterized by high
drainage density, high proximity to rivers, flat
terrain, and low slopes. While areas, characterized
by high elevation, higher slope, and no river basins
are classified as low, as well as moderate.
Moderate areas are also especially found in flat

Environment and Human Security (UNU-EHS).
Respondents compared the importance of each
parameter relative to the others, and the results
were used to construct pairwise comparison
matrices. The geometric mean of the responses
was used to complete the matrix for the FPC (Table
2.).

The normalized values and final weights (Table 2.2)
revealed that Drainage Density (0.21), Land Use
Land Cover (0.18), and Annual Rainfall (0.15) were
considered the most influential parameters
contributing to flood susceptibility. Other
parameters, including Distance to the River (0.13),
Elevation (0.12), Topographic Wetness Index (0.11),
and Slope (0.10), were seen as less significant but

Table 2.2: Normalized vector for FPC.

The FPC map revealed that 43.04%

of the study area is highly and very

highly flood-prone, 48.74% is
moderately prone, and only 8.22% is low-prone.
120 Validation with Sentinel-1flood data showed that

terrain and lower slopes, However, the
topographical characteristics of rivering areas in
particular make them higher flood-prone areas.

100 over 71% of past floods occurred in high and very
;E 80 high FPC areas, confirming the map's accuracy.
& High-risk zones are mainly near river basins with
_‘E &l flat terrain, high drainage density, and proximity to
j!; 40 rivers, while elevated and sloped areas were less
20 flood-prone.
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Figure 2.8: Distribution of FPC classes by area (km?).

still relevant.

To ensure consistency, the matrix was tested using
eigenvalue-based methods. The process included
normalization of the matrices, calculation of
weighted sums, consistency vectors, and the
maximum eigenvalue value, confirming the logical
consistency of expert judgments. The resulting

”__ Borderto India

consistency ratio (CR) of 0.04 confirmed the [ District
internal consistency and validity of expert ———Major River
assessments. Flood-prone areas were validated ®  Major City

using Sentinel-1 SAR data (Copernicus Sentinel
data, 2021-2024). The data was refined to
exclude slopes > 3° and detect floods using a -3
dB threshold. Overlaps with FPC classes were
analyzed to confirm accuracy.
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AR 1 2 1 1 1 1 1 AR 015 02 01 om0V 009 0N 05 s I Hig

DR ” oo 1 1 1 1 1 DR 008 013 019 O0M O0F 009 om 013  Low I Very high
oD 1 1 1 3 1 3 2 DD 05 013 019 033 0V 021 022 0N Moderate

i 1 1 m 1 1 1 1 i 015 013 006 0N 0N 009 0N 012

e 1 1 1 1 1 3 2 LuLe 015 013 019 om  O0W 02 02 018

s 1 1 m o1 "o 1 sL 015 013 006 0N 006 009 0N 01

w R R v 05 013 01 om 009 009 Oom  om Map 2.15: Distribution of FPC classes in the study area. ! 2 10ikan
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Flood-Prone Component at rensi tevel

The results of the Flood-Prone

Component (FPC) indicate that

almost half of the study area falls
within the moderate flood-prone category, while a
smaller portion of ~43% is classified as high and
very high. This confirmed the high flood of
catastrophic susceptibilities in the Punjab region.
The high classes can especially be found near river
hasins, characterized by high drainage density, high
proximity to rivers, flat terrain, and low slopes.
While areas, characterized by high elevation, higher
slope, and no river basins are classified as low, as
well as moderate. Moderate areas are also
especially found in flat terrain and lower slopes,
However, the topographical characteristics of
riverine areas in particular make them higher flood-
Prone areas.

Table 2.3: Tehsils with the heighest FPC.

The FPC aggregated to Tehsils (Map 2.16)
confirmed these findings. Especially areas in river
basins are highly affected. Furthermore, based on
the average FPC class value highest affected
Tehsils are identified (Table 2.3); these values
ranged from 2.26 to 3.99. Lahore City has an
average FPC class value of 3.99 with 96.23% of
its area classified as high and very high flood-
prone. The Ahmadpur Sial and Ferozewala also
show values around 3.98 with over 96% of their
area in high and very high. Through these Tehsils,
major rivers flow through, and almost the entire
settlement area is exposed as the high percentage
suggested.

The FPC map averaged at the Tehsil

level showed that nearly half the area

is moderately flood-prone, while
~43%is high to very high. High-risk zones, mainly
near river basing with flat terrain and dense
drainage, include Lahore City, Ahmadpur Sial, and
Ferozewala - each with over 96% of their area
highly flood-prone.

Muridke /

Feruzewala ~
+ . Lahore Glty
- Sharak Pur

Rank Tehsil Total Tehsil Area (km?) High FP Area (km?) Very High FP Area (km?) Combined FP Area (km?) % of Tehsil in High & Very High FP  Average FPC Class
: . ) _
1 Lahore City 23748 22231 6.15 22853 96.23% 399 W Border to India
2 Ahmadpur Sial 758,67 12273 131 735.83 96.99% 399 [ bisti
3 F | 576,54 553,51 384 551.35 96.67% 397 st
erozewaia X i B i A o B

, 1 Tehsi
4 Muridke 832.6 782.49 03 78279 94.02% 394
5 Khanpur 172194 1609.15 013 1609.28 9313% 393 === Major River
6 Bahawalpur City 38542 355,63 001 355 64 92.21% 392 @©  Major City
1 Sharak Pur 386.06 349.98 08 35078 90.86% 391 LAH  District Name
8 Khairpur Tamewali 720.83 647,54 0.65 64819 89.92% 39 Khanpur ¥eﬁy high ﬁ
9 Jalalpur Pirwala ~ 878.36 7841 0 784.1 89.21% 3.89 ehsil Name
10 Rahim Yar Knan ~ 2126.86 184392 10.99 18549 81.21% 388

Flood-Prone

To visualize FPC distribution
regionally, the mean FPC values were

flood-proneness across administrative regions.

, , Lower Higher
calculated at the Tehsil level using g
Zonal Statistics. This method averages pixel values
within each Tefsil, allowing for easy comparison of Map 2.16: FPC aggregated to Tehsils (The top 10 Tehsils with the highest flood-prone score are labelled). : 50 100 km
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Population Susceptibility Component

Dependent Population

Disabled Population

Female Population

Population Density

Population Susceptibility Gomponent

Population Susceptibility Component at Tehsil level

While there has been extensive

research into physical vulnerability,

social vulnerability aspects have only
been given more attention in recent years (Ajtai et
al, 2023). Social vulnerability can be influenced by
factors such as age, medical conditions, education,
gender, race and ethnicity, income, residential
property (Cutter, Boruff and Shirley, 2003).
Therefore, another component of the study's FVI is
the Population Susceptibility Component (PSC),
assessing the demographic and socioeconomic
characteristics that affect a population’s ability to
withstand floods, consisting of four parameters
focusing directly on population characteristics
(Table 1.2): the Dependent Population (DeP), the
Disabled Population (DiP), the Female Population
(FP), and the Population Density (PD). While the
DeP. DiP and FP have difficulties in emergency

In this study, the component of the

Population Susceptibility Component

(PSC) is based on four parameters:
Dependent Population (DeP), Disabled Population
(DiP), Female Population (FP), and Population
Density (PD). Based on the downloaded census
data, an Excel sheet was created putting all the
required data together. For the DeP. the number of
people under 15 and over 60 were counted and the
percentage was calculated for each Tehsil.
Furthermore, the amount of disabled, for DiP, and
female population, for FP, was transferred and the
share in each Tehsil was calculated. The PD was
calculated with the total amount of the population

situations (Neumayer and Plimper, 2007; Hoque
etal, 2019), higher PD is considered as a higher
risk (Hoque et al., 2019). While social vulnerability
consists of a broader range of socio-economic,
demographic, and infrastructural factors (Cutter,
Boruff and Shirley, 2003; Ajtai et al., 2023), other
studies also use factors of economic and
infrastructural kind, such as housing conditions and
building characteristics (Fernandez, Mourato and
Moreira, 2016; Hamidi et al., 2022), their
exclusion in this study is due to data availability
limitations. Therefore, this index is termed PSC, as
it does not cover all aspects of social vulnerability
but focuses on key demographic indicators to
provide a human-centered approach, representing a
measure of human susceptibility to flood risks in
the study area, given the possibility of measuring
flood vulnerability directly at the population.

and the area of the Tehsils. Then, this table was
joined with the administrative boundaries shapefile
of the Tehsils. A map was created for each PSC
parameter. As the census data was available on
administrative boundaries (Tehsils), a dasymetric
map was created for all PSC parameter maps. A
dasymetric map is a thematic mapping technique
in which statistical data is redistributed on the
basis of additional spatial information to provide a
more accurate representation of population
distribution within administrative boundaries
(Eicher and Brewer, 2001). To get this information,
the Tehsil map was masked out with settlement
data, derived from the LULC. A settlement layer

was created based on the LULC consisting of
buildings (1), and no-buildings (0); each PSC
parameter map was then calculated with the
equation below:

PSC paramter map masked =
settlements x PSC parameter map

The PSC represents human-related vulnerability,
therefore, the dasymetric mapping method ensures
that the analysis of PSC is only represented in
settled areas. This prevents overestimation in
large, sparsely populated Tehsils and provides
more realistic spatial representation of human
vulnerability.
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Dependent Population

The Dependent Population (DeP) is

comprised of people under 15 and

over 60. According to Hoque et al.
(2019), these age groups are dependent, as they
may not earn money and are dependent on other
family members. The share of DeP ranged from
31.80% to 59.20%, with a mean of 44.77% and a
SD of 3.31%. Given the skewed distribution,

Considering the dasymetric map, masked out with
settlements (Figure 15¢), the classification
describes 15.64% (1107.68 km?) of the study area
asvery low, 25.90% (1834.30 km?) as low,
28.18% (1995.62 km?) as moderate, 23.29% as
high (1649.31km?), and 6.99% (494.74 km?) as

very high ininhabited places (Figure 3.1, Map 3.1).

Areas with a higher dependent population face
greater challenges because babies, children, and
elderly people might be more vulnerable when
flooding occurs. The Tehsils with the highest values
are Ahmadpur East, Alipur, Dera Ghazi Khan,
Jampur, Jatoi, Koh-e-Suleman, Kot Chatta,

Natural Breaks was chosen as an interval method. o ‘&ﬁ ﬁéwéipin ” Liagatpur, Muzaffargarh, Rajanpur, Rajanpur (Tribal
The values were classified into five classes: < e : !(,0} B Area), Rojhan, and Taunsa (Map 3.2).
41.41% (very low), 41.41-43.54% (low), ; e
43.54-45.10% (moderate), 45.70-
49.11% (high), > 49.11% (very high). A lot Y
of dependent populations are in the south- '
western rural areas, while in the northern
part as well as in the City Tehsils it is 55
less (Figure 15a). X
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Map 3.1: Distribution of Dependent Population classes in the study area.

Figure 3.1: Distribution of Dependent Population
classes by area (km?) in inhabited places.

The Dependent Population (under 15

and over 60 years old) was

calculated per Tehsil using census
data. These groups are considered more vulnerable
and dependent during disasters. The DeP ranged
from 37.80% to 59.20%, with a mean of 44.77%.
Due to skewed distribution, Natural Breaks
classification was applied: <41.41% (very low),
41.41-43.54% (low), 43.54-45.70% (moderate),
45.70-49.11% (high), >49.11% (very high). Higher
dependent populations are found mainly in the rural
southwest, while city Tehsils and the north show
lower values. In inhabited areas, 28.18% fall in the
moderate class, and 6.99% in very high.
Vulnerable Tehsils include
Muzaffargarh, Rajanpur, and Dera
Ghazi Khan.
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Map 3.2: Dependent Population values across the study area.
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Disabled Population

Disabled populations (DiP) face

challenges in emergency situations

(Hoque et al., 2019). The share of
DiP ranged from 1.67% to 15.73%, with a mean of
4.21% and a SD of 2.00%. Natural Breaks was
chosen as an interval method. The values were
classified into five classes: < 2.65% (very low),
2.65-3.86% (low), 3.86-5.70% (moderate),
5.70-9.40% (high), > 9.40% (very high). The
distribution of the disabled population in the
Tehsils is fairly even, however, a slight
distribution with a higher percentage can
be seen in the north-western part.
Furthermore, the highest amount is in the
Tehsil in the south-west, as well as in the
northern part; the Tehsil of Rajanpur
(Tribal Area), as well as Kahuta
(Map 3.4).

%

;

The classification describes 20.51% (1452.29
km?) invery low, 46.10% (3264.80 km?)in low,
24.92% (1764.74 km?) in moderate, 8.21%
(581.29 km?) as high, and 0.26% (18.54 km?) as

very high in inhabited places (Figure 3.2, Map 3.3).
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Map 3.3: Distribution of Disabled Population classes in the study area.

These findings suggest that, although the areas in
the higher ranges are modest, some areas are
characterized by very high share of disabled
population, making them highly vulnerable during
flood events.
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Figure 3.2: Distribution of Disabled Population
classes by area (km?) in inhabited places.
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Disabled Population (DiP)

percentages were calculated per

Tehsil using census data. People with
disabilities face heightened vulnerability during
flood events. DiP values ranged from 1.67% to
15.73%, with a mean of 4.21%. Using Natural
Breaks classification, five classes were created:
<2.65% (very low), 2.65-3.86% (low), 3.86-
5.710% (moderate), 5.70-9.40% (high), and
>9.40% (very high). Most inhabited areas fall into
the low (46.10%) and moderate (24.92%)
categories. Higher DiP values appear in some
northwestern and southwestern Tehsils, especially /
Rajanpur (Tribal Area) and Kahuta. Though the
highest classes cover smaller areas,
they mark zones of significantly
increased flood vulnerability.
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Map 3.4: Disabled Population values across the study area.
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Female Population

Female population might have more

difficulties in flooding situation and

their mobility during evacuating, e.g.,
during pregnancy (Neumayer and Plimper, 2007).
The share of the Female Population (FP) ranged
from 46.12% to 52.02%, with a mean of 49.00%
and a SD of 0.91%. Natural Breaks were chosen as
an interval method. The values were classified into
five classes: < 48.02% (very low), 48.02-48.71%
(low), 48.77-49.40% (moderate), 49.40-
50.20% (high), > 50.20% (very high).

The classification

Multah

describes 22.58% (1598.95 km?) in very low,
23.56% (1668.64 km?) in low, 30.58% (2165.22
km?) in moderate, 20.11% (1423.83 km?) as high,
and 3.18% (225.01 km?) as very high in inhabited
areas (Figure 3.3, Map 3.5).
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Map 3.5: Distribution of Female Population classes in the study area.

The higher percentage can be seen in the northern
part in the Tehsils of Bhalwal, Chakwal, Gujar Khan,
Jand, Kahuta, Kallar Sayaddan, Naushera

(Map 3.6).
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Figure 3.3: Distribution of Female Population classes
by area (km?) in inhabited places.

Census data was used to calculate

the share of female population (FP)

per Tehsil. Since women—particularly
pregnant women—may face greater challenges
during floods, higher FP percentages can indicate
increased vulnerability. The FP ranged from
46.12% t0 52.02%, with a mean of 49%. Using
Natural Breaks, the data was classified into five
categories: <48.02% (very low), 48.02-48.77%
(low), 48.77-49.40% (moderate), 49.40-
50.20% (high), and >50.20% (very high). Most
moderate to high values are located in northern
Tehsils such as Bhalwal, Chakwal, and Kahuta.

Map 3.6: Female Population values across the study area.
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Population Density

Higher Population Density (PD) is The higher population density can be seen in the Population Density (PD) was
considered more vulnerable (Hoque city Tehsils, especially in Faisalabad City, calculated using census data by
etal., 2019). The values ranged from Gujranwala City, Model Town, and Lahore City (Map dividing population totals by Tehsil Rawalpindi
8.56 pop./km? to 18,945.59 pop./km?, with a 3.8). However, since the AHP identified the PD as areas, then joined with administrative boundaries.
mean of 1276.36 pop./km? and a SD of 2866.66 the least influential parameter of the PSC, its Since denser populations are more flood-
pop./km?. Natural Breaks was chosen as an impact will be smaller than the other ones. vulnerable, PD was classified using Natural Breaks
interval method and the layer categorized into five into five classes: <600 (very low), 500-2000

classes: <600 pop./km? (very low), 600-2000
pop./km? (low), 2000-4000 pop./km?
(moderate), 4000-9000 pop./km? (high), >
9000 pop./km? (very high). The
classification describes 28.61%
(2025.85 km?) in very low, 53.92%
(3818.63 km?) in low, 8.74% (619.24
km?) in moderate, 3.06% (216.62 km?)
ashigh, and 5.67% (401.31 km?) as
very high in inhabited places (Figure
3.4 Map 3.7).

Y (low), 2000-4000 (moderate), 4000-9000
< ety 2 - ‘. ‘ i = 2 i
) 5 {Q/qualpindi (high), and >9000 pop./km= (very high). Most

areas fall into low (53.92%) and very low
(28.61%) categories. High-density zones include
urban Tehsils like Faisalabad City, Gujranwala City, ;
Model Town, and Lahore City. Despite this, AHP // 4
ranked PD as the least influgntial factor in the /

PSC, meaning its contribution to flood 2 Lahors Gity
vulnerability is relatively minor. 5 i N
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by area (km?) in inhabited places.
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Population Susceptibility Component

The Population Susceptibility

Component (PSC) Map was created

with overlay analyses based on its
parameters and the weights. The map ranged from
1 (very low population susceptibility) to 4 (high
population susceptibility); while 1.89% (133.86
km?) in very low, 48.78% (3454.19 km?) i low,
41.91% (3392.97 km?) is moderate, and 1.42%
(100.63 km?) in high population susceptibilit in
inhabited places in the PSC pixel map (Figure 2.5,
Map 3.9).

The Population Susceptibility

Component (PSC) was assessed

using the Analytical Hierarchy
Process (AHP) to evaluate the relative importance
of four key parameters: Dependent Population
(DeP), Disabled Population (DiP), Female
Population (FP), and Population Density (PD).
A structured pairwise comparison method, based
on Saaty's 1-9 importance scale, was employed to
reflect expert judgment.

Expert opinions were gathered through a survey
conducted via the online tool QuestionPro. The
survey was completed by eight professionals from
Pakistan and five climate risk analysts from the
United Nations University - Institute for
Environment and Human Security (UNU-EHS).

Table 3.1: Pairwise comparison matrix for PSC.

Parameter DeP DiP FP PD
DeP 1 1 2 4
DiP 1 1 4 4
FP 172 /4 1 3
PD /4 /4 13 1

Higher susceptibility are mostly located in rural
areas, while areas with less population
susceptibility are in urban areas.

Participants rated the importance of each
parameter relative to the others, and their
responses were used to construct pairwise
comparison matrices. The geometric mean of the
responses was applied to populate the PSC matrix
(Table 3.1).

The normalized values and final weights (Table 3.2)
showed that the Disabled Population (0.41) and
Dependent Population (0.34) were considered the
most influential indicators of population
susceptibility. Female Population (0.17) and
Population Density (0.08) were seen as less
influential but still relevant.

Table 3.2: Normalized vector for CCC.

Parameter DeP DiP P PD Weight
DeP 0.36 04 0.2 033 034
DiP 0.36 04 0.55 033 0.4
P 0.18 01 0.14 0.25 0.17
PD 0.09 01 0.05 0.08 0.08
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Figure 3.5: Distribution of PSC classes by area (km?)
in inhabited places.

To ensure the reliability of these judgments, the
matrix was evaluated using eigenvalue-based
consistency measures. This included the
normalization of matrices, computation of weighted
sums, consistency vectors, and the maximum
eigenvalue value. The resulting consistency ratio
(CR) of 0.04 confirmed the internal consistency
and validity of expert assessments.

The PSC map revealed that most
inhabited areas fall within the low
(48.78%) and moderate (47.91%)

susceptibility classes, with only a small portion ATT
classified as high (1.42%) or very low (1.89%). RAW
Higher susceptibility is predominantly found in d
rural regions, driven by larger proportions of :CHA
dependent and disabled populations, while urban JHE
areas tend to show lower susceptibility levels.
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Map 3.9: PSC classes distribution in the study area in inhabited places.
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Population Susceptibility Component at tensi tevel

The Population Susceptibility

Component (PSC) aggregated to

Tehsils (Map 3.10) showed that the
Tehsils Jalalpur Pirwala, Kot Radha Kishen, Chowk
Sarwar Shaheed, Naushera, Rajanpur (Tribal Area),
and Koh-e-Suleman are identified as the highest
population susceptibility. These Tehsils are mostly
located in rural areas, while areas with less
population susceptibility are in urban areas. As the
AHP evaluated the population density as the lowest
influential factor (8%) it makes sense, that the
rural areas achieved higher values, as they are
characterized by a higher percentage of dependent
and disabled population.

Table 3.3, shows the values of the average PSC
values, which range from 1.00 to 4.00. As the data
was available as Tehsil census data, the average

Table 3.3: Tehsils with the heighest PSC.

data values are at whole numbers when
aggregating the Tehsil. However, comparing Map
3.9 and Map 3.10 the importance of dasymetric
mapping becomes clear.

Dasysmetic mapping plays a crucial role in

ensuring accuracy throughout the study. Without it,

large Tehsils would appear highly vulnerable in the
calculation of the Flood Vulnerability Index (FVI)
pixel map, as every pixel of this large area would
have data from the census data. While each
settlement pixel within a Tehsil was assigned the
same PSC value this approach offers a higher
resolution and better interpretability than full-
scaled aggregated data. The most accurate method
would be to assign the individual pixel location the
exact value based on household survey data for
instance but given the unavailability of such data

for the entire region, the adopted approach remains
an effective and practical alternative. This is the
same for the CCC, respectively.

Rank Tehsil Total Settlement Area (km?) Moderate PS Settlement Area (km?) High PS Settlement Area % of High Average PSC Class
1 Jalalpur Pirwala 3443 0 3443 100.00% 400.00%
2 Kot Radha Kishen 33.72 0 3372 100.00% 400.00%
3 Chowk Sarwar Shaheed 22.18 0 2218 100.00% 400.00%
4 Naushera 533 0 5.33 100.00% 400.00%
5 Rajanpur (Tribal Area) 3.49 0 349 100.00% 400.00%
6 Koh-e-Suleman 141 0 141 100.00% 400.00%
1 Zafarwal 2156 2156 0 0.00% 300.00%
8 Vehari 13.74 13.74 0 0.00% 300.00%
9 Taunsa 32.33 32.33 0 0.00% 300.00%
10 Sohawa 2018 2018 0 0.00% 300.00%

To visualize PSC distribution

regionally, the mean PSC values

were calculated at the Tehsil level
using Zonal Statistics. This method averages pixel
values within each Tehsil, allowing for easy

comparison of population susceptibility across
administrative regions.

The PSC aggregated to the Tehsil

level highlighted Jalalpur Pirwala, Kot

Radha Kishen, Chowk Sarwar
Shaheed, Naushera, Rajanpur (Tribal Area), and
Koh-e-Suleman as the most population-susceptible
areas; primarily rural Tehsils with high proportions
of dependent and disabled populations. Urban areas
showed lower susceptibility. Due to population
density being the least weighted factor in AHP,

rural areas ranked higher.
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Map 3.10: PSC aggregated to Tehsils (The top 6 Tehsils with the highest flood-prone score are labelled). [,] 5,[] “,)D km
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The third component of the FVI is the

Coping Capacity Component (CCC).

According to UNISDR (2009), the
coping capacity is the “ability of people,
organizations, and systems, using available skills
and resources, to face and manage adverse
conditions, emergencies or disasters”. Due to data
limitations, two capacity coping parameters were
chosen (Kablan, Dongo and Coulibaly, 2017; Hoque

and the Literacy Rate (LR).

Coping Capacity Component

The component of the coping

capacity consists of two criteria, i.e.,

Distance to Health Facilities (DH)
and Literacy Rate (LR). The distance to health
facilities was calculated with ‘Distance
Accumulation’. Similar to the PSC parameters, the
literacy rate was derived from the 2023 census
data and combined with the administrative
boundaries of the Tehsils. As the census data was
available on administrative boundaries (Tehsils), a
Lite racy Rate dasymetric map was created for all PSC parameter
maps. A dasymetric map is a thematic mapping
technigue in which statistical data is redistributed
Coping Capacity Component at Tehsil level on the basis of additional spatial information to

Distance to Health Facilities

Coping Capacity Component

gtal,, 2019): the Distance to Health Facilities (DH),

provide a more accurate representation of
population distribution within administrative
boundaries (Eicher and Brewer, 2001). To get this
information, the Tehsil map was masked out with
settlement data, derived from the Land Use Land
Cover. A settlement layer was created based on the
LULC consisting of buildings (1), and no-buildings
(0); each PSC parameter map was then calculated
with the equation below:

CCC paramter map masked =
settlements X CCC parameter map

The CCC represents human-related vulnerability,
therefore, the dasymetric mapping method ensures

that the analysis of CCC is only represented in
settled areas. This prevents overestimation in
large, sparsely populated Tehsils and provides a
more realistic spatial representation of human
vulnerability.
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Distance to Health Facilities

that urban areas have better connections to health
Facilities (DH) ranged from O m to facilities. Rural areas, with distances often more
140,110.78 m, with a mean of than 8000 m, may be more vulnerable to flood
24.995.72 mand a SD of 22,050.09 m. The layer events as they may face difficulties in flood events
was classified in accordance with other literature in assessing essential emergency services.
(Hogue et al., 2019). The values were classified
into five classes: < 2000 m (very high), 2000-
4000 m (high), 4000-6000 m (moderate), T
65000-8000 m (low), > 8000 m (very low). 4 '
Especially in the major cities of Punjab health L o & AR
facilities can be found (Map 4.2), ' ey

The values of Distance to Health

The classification describes 50.04%
(3897.82 km?) in very low, 6.77%

(479,66 k) inlon, 718% (508.60 L e I DA R e
km?) in moderate, 9.76% (691.45 km?) g e N ST G‘ e
as high, and 21.24% (150412 kn?) as o s ‘ N
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Figure 4.1: Distribution of Distance to Health
Facilities classes by area (km?) in inhabited places.

Map 4.1: Distribution of Distance to Health Facilities classes in the study area.

The Distance to Health Facilities

(DH) was calculated using OSM data

and the Distance Accumulation' tool.
Distances ranged from 0 to 140,110.78 meters,
with a mean of 24,995.72 meters and a standard
deviation of 22,050.09 meters. Based on existing
literature, the data were classified into five
categories: <2000 m (very high accessibility),
2000-4000 m (high), 4000-6000 m
(moderate), 6000-8000 m (low), and >8000 m
(very low accessibility). The results show that
urban areas, particularly major cities in Punjab,
generally have better access to health facilities. i
However, 50.04% (3,897.82 km?) of inhabited
areas fall into the very low
accessibility category, indicating
that a large portion of the
population may face
difficulties accessing
emergency health
services during flood
events. This highlights a
significant
vulnerability in
more remote
or rural
regions.
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Map 4.2: Distance to Health Facilities values across the study area. -
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Literacy Rate

Through low literacy rate warnings

can be missed (Hagenlocher et al.,

2016). The values of the Literacy
Rate (LR) layer ranged from 8.60% to 88.20%,
with a mean of 63.94% and a SD of 13.30%.
Natural Breaks were chosen as an interval method
and the layer was classified into five classes:
<44.05% (very low), 44.05-59.02% (low),
59.02-67.55% (moderate), 67.55-76.28%
(high), > 76.28% (very high).

Low literacy rates can be found in the
southwestern part of the province, and in
the rural areas, while in the cities and in
the northern part, high literacy rate is
drawn

The classification describes 5.41% (383.26 km?)
invery low, 28.17% (1995.21 km?) in low, 23.47%
(1662.22 km?) in moderate, 20.10% (1423.17
km?) as high, and 22.84% (1617.79 km?) in very
high literacy rate in inhabited places (Figure 4.2,
Map 4.3). The Tehsils with the lowest values are

Multan
PO

Map 4.3: Distribution of Literacy Rate classes in the study area.

Ahmadpur East, Alipur, Jalalpur Pirwala, Jampur,
Jatoi, Koh-e-Suleman, Kot Chatta, Liagatpur,
Minchinabad, Rajanpur, Rajanpur (Tribal Area),
Rojhan. This distribution shows that areas with
limited literacy, mainly the rural areas, may face
challenges when flood warnings are communicated
(Map 4.4).
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Figure 4.2: Distribution of Literacy Rate classes by
area (km?) in inhabited places.

Data from the 2023 census was

used to assess literacy across

Tehsils. Literacy rates varied between
8.60% and 88.20%, with an average of 63.94%.
Using Natural Breaks, five classes were defined:
very low (<44.05%) to very high (>76.28%). Low
literacy—linked to poor flood warning
comprehension—is mostly found in rural and
southwestern areas, while urban and northern
regions show higher rates. In inhabited areas,
5.41% of land had very low literacy, while 22.84%
had very high. Vulnerable Tehsils with the lowest
literacy include Ahmadpur East, Alipur, Jatoi, and ﬂ
Rajanpur.
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Map 4.4: Literacy Rate values across the study area.
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Coping Gapacity Component

The Coping Capacity Component

(CCC) Map ranged from 1 (very low

coping capacity) to 5 (very high
coping capacity); while 26.64% (1886.33 km?) of
the study area is very low, 32.14% (2275.78 km?)
is low, 9.74% (689.99 km?) is moderate, 15.00%
(1061.94 km?) in high, and 16.49% (1167.60 km?)
in very high coping capacity (Figure 4.3).

The Coping Capacity Component

(CCC) was assessed using the

Analytical Hierarchy Process (AHP)
to evaluate the relative importance of two key
parameters: Distance to Health Facilities (DH) and
Literacy Rate (LR). This structured method, based
on Saaty's 1-9 scale, enabled expert-based
prioritization of indicators relevant to community
resilience.

Expert opinions were collected through a survey
conducted via the onling tool QuestionPro, involving
eight professionals from Pakistan and five climate
risk analysts from the United Nations University -
Institute for Environment and Human Security

Urban areas are characterized by higher coping
capacity, as cities have a higher presence of health
facilities, and they were ranked as highest in the
AHP (67%). Furthermore, the literacy rate is also
higher in urban areas and to the north.

(UNU-EHS). Participants performed pairwise
comparisons of the CCC indicators, and the
geometric mean of their responses was used to
complete the matrix (Table 4.1).

The normalized values and final weights (Table 4.2)
revealed that Distance to Health Facilities (0.67)
was considered more influential than Literacy Rate
(0.33) in determining coping capacity.

To ensure logical consistency, the matrix was
tested using eigenvalue-based methods, including
normalization, weighted sum, and consistency
vector calculations. The resulting consistency ratio
(CR) for the CCC matrix was 0.00, indicating

The CCC map shows that coping

capacity is highest in urban areas,

where access to health facilities and
literacy rates are better. The majority of very high
and high coping capacity zones are found in cities,
with 16.49% and 15.00% of the area falling into
these categories, respectively. In contrast, rural
regions, especially in the south, show very low to

I low coping capacity, making up over half the study
I area.
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Figure 4.3: Distribution of CCC classes by area (km?)
in inhabited places.
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Table 4.1: Pairwise comparison matrix for CCC. Table 4.2: Normalized vector for CCC. COplﬂg Capacity

Parameter AR DR DD £ e st ™I Parameter AR DR 0D fL e st ™I Weight B Very o W High

AR 1 2 1 1 1 1 1 AR 015 025 019 01 07 009 01 015

DR "o 1 1 1 1 1 DR 008 013 01 01 07 009 01 013 B Low M Very high
0D 1 1 1 3 1 3 2 0D 015 013 019 033 0N 021 02 02 Moderate

EL 1 1 1’ 1 1 1 £l 015 013 006 01 0¥ 009 0N 012

LuLe 1 1 1 1 1 3 2 LuLC 015 013 019 o1 0V 021 02 018

sL 1 1 o w1 1 sL 015 013 006 01 006 009 01 01

Wi 1 1 7 71 1 ™l 015 013 01 01 003 009 01 OM Map 4.5: Distribution of CCC classes in the study area. 0 50 100 km
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Coping Gapacity Component at tensit level

The CCC aggregated to Tehsils values ranged from 1.00 to 4.92.
emphasizes the results (Map 4.6).

Especially in urban areas, the ability b § 3 Rawalpindi

to cope is high. Several Tehsils are identified with
the lowest coping capacity (Table 4.3): Athara
Hazari, Bahawalnagar, Isakhel, Jalalpur Pirwala,
Jatoi, Kalur Kot, Liagatpur, Pakpattan, Quaidabad,
Noorpur, Shorkot, Kot Chatta. The average CCC

Table 4.3: GCC area of the classes.

Rank Tehsil Total Settlement Area (km?) Very low CC Settlement (km?) Low CC Area (km?) Combined CC Settlement % of Very low + Low Average CC Class
1 Athara Hazari 2017 2017 0 2017.00% 100.00% 1
2 Bahawalnagar  64.36 64.36 0 6436.00% 100.00% 1
3 Isakhel 31.86 31.86 0 3786.00% 100.00% 1
4 Jalalpur Pirwala 3443 34.43 0 3443.00% 100.00% 1
5 Jatoi 3062 3062 0 3062.00% 100.00% 1
6 Kalur Kot 262 262 0 2620.00% 100.00% 1 Athara Hazari
1 Liagatpur 68.1 68.71 0 6871.00% 100.00% 1
8 Pakpattan 5276 5216 0 5276.00% 100.00% 1
9 Quaidabad 1218 1218 0 1218.00% 100.00% 1
10 Noorpur 251 25,68 0.03 2571.00% 100.00% 1
1 Shorkot 4997 498 0.7 4997.00% 100.00% 1 Border to India
12 Kot Chatta 2616 26.04 013 2616.00% 100.00% 1 1 Distic
13 Sadigabad 86.18 85.44 0N 8615.00% 99.97% 1.01 _
14 Rojhan 12.07 1199 0.07 1205.00% 99.82% 1.01 @ sl
5 Dunyapur 314 31.05 035 3140.00% 100.00% 101 === Major River
16 Depalpur 7,02 1637 041 7678.00% 99.68% 101 @©  Major City
1 Khairpur Tamewali 21.16 2081 035 2116.00% 100.00% 1.02 LAH  District Name
18 Lodhran 55.52 54.56 091 5548.00% 99.92% 1.02 Jatoi  Very low
19 Kabirwala 1218 699 2.04 7194.00% 99.67% 103 Tensijharme
20 Minchinabad 29.21 28.01 109 2916.00% 99.62% 1.05
N " .
Tovisualize CCC distribution comparison of coping capacity across v STLL 4 4 Coping Capacity
regionally, the mean CCC values administrative regions. -
/ Lower Higher

were calculated at the Tehsil level
using Zonal Statistics. This method averages pixel

values within each Tehsil, aHOWi”g for easy Map 4.6: CCC aggregated to Tehsils (The top 12 Tehsils with the highest flood-prone score are labelled). (.] J.U igU v
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Flood Vulnerability Index

The Flood Vulnerability Index (FVI)

was calculated by multiplying the

Flood-Prone Component (PFC) with
the Population Susceptibility Component (PSC) and
dividing by the Coping Capacity Component (CCC).
The FVI was classified using the Equal Interval
method. The calculation of the FVI revealed that
13.28% (941 km?) of the study area is in very high
and high vulnerability areas in inhabited places in
the FVI pixel map (Map 5.1). The FVI emphasizes
that areas characterized by large flood-prone and
large population susceptibility values, as well as
low coping capacity are highly vulnerable.

Very low : : ! :
Low Border to India
Moderat | District

Ml High , ——— Major River
Very high (®  Major City

LAH  District Name

12

The FVlis calculated with the
Equation:
(FPC x PSC)

FVI = CCC

where represents the Flood Vulnerability Index,

the Flood-Prone Component, the Population
Susceptibility Component, and the Coping
Capacity Component (CCC).

Since the PSC and the CCC outputs were masked
with settlements to make sure to focus on actual
human populations, a lot of Null values would exist
in the results of this formula. In order to avoid
computational issues and bias in the flood
vulnerability calculation, areas with no data in PSC
were given the lowest vulnerability class (1) to
reflect the absence of population at risk. Areas with
no data in the CCC were assigned with the highest
coping capacity class (5) to indicate that

uninhabited areas do not require coping
mechanisms. This makes sure that higher FPC and
PSC values indicate worse conditions (more risk),
and higher CCC reduces it, respectively. The
approach ensures that the FPC remains for the
whole area, while PSC and CCC-related factors
only apply to actual human populations, preventing
distortions in the final vulnerability assessment.

Flood Vulnerability Index

B Verylow I High
Low I Very high
Moderate

Map 5.1: Distribution of FVI classes in the study area.
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Flood Vlllnerah“ity Index at tensil tevel

. | TheFVlaggregated to Tehsils
- = revealed that Jalalpur Pirwala is the
= areawiththe highest flood
vulnerability (Map 5.6). This Tehsil has an average
FPC of 3.89, an average PSC of 4.00, and an
average CCC of 1.00, resulting inaraw FVI of
around 15.57, which normalizes to 1.00, making it

the most vulnerable.

The Tehsils identified as the most vulnerable are
Jalalpur Pirwala, Shorkot, Khairpur Tamewali,
Bahawalnagar, Sadigabad, Athara Hazari,
Pakpattan, Jatoi, Chowk Sarwar Shaheed, and
Liagatpur (Table 5.1). While Tehsils like Koh-e-
Suleman (avg. PSC 4.00) have high population
susceptibility and a lower cooping capacity (avg.
CCC 1.65), their PFC is lower (avg. PFC 2.51) than
other areas, making it less vulngrable when
computed by the formula.

Table 5.1: Tehsils with the heighest FVI.

In contrast, Tehsils with higher CCC averages, like
Multan City, have a high average of CCC (4.68),
but low PSC (1.00) and high PFC (3.63), however,
vulnerability is still low due to the high CCC. This
emphasizes that even urban areas are more prone
to flooding overall, due to distance to rivers, but as
the ability to cope is higher and the population is
less exposed, they are less affected.

E The FVI and its

== components can also be
explored in an interactive
dashboard.

The website can be accessed via the QR code or at
https://gernotnikolaus github.io/FVI_Punjab/
(recommended on desktop).

Rank Tehsil Total Settl. Area (km?) Av. PFC Settl. Tehsil  Av. PSC Settl. Tehsil Av. CCC Settl. Tehsil FVI norm. Raw FVI
1 Jalalpur Pirwala 34.43 3.89 & 100.00% 100.00% 15.57
2 Shorkot 49.96 381 3 100.00% 13.00% 11.58
3 Khairpur Tamewali ~ 21.16 39 3 102.00% 13.00% 1151
4 Bahawalnagar 64.36 3.83 3 100.00% 12.00% 11.48
5 Sadigabad 86.18 364 3 101.00% 68.00% 10.83
6 Athara Hazari 2017 354 3 100.00% 66.00% 1061
1 Pakpattan 52.16 349 3 100.00% 65.00% 1046
8 Jatoi 30.62 341 3 100.00% 65.00% 104
9 Chowk Sarwar Shah ~ 22.18 344 ) 135.00% 63.00% 1015
10 Liagatpur 68.1 3.34 3 100.00% 63.00% 10.03

To visualize FVI distribution

regionally, the mean FV/ values were

calculated at the Tehsil level using
Zonal Statistics. This method averages pixel values
within each Tehsil, allowing for easy comparison of

flood vulnerablity index across administrative
regions.

~ BordertoIndia
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@I Tehsil

———Major River
®  Major City
JHANG District Name

Bahawalnagar 7

) sﬁt
Kajtpus BAH
s Tamewali

7~

»
Al Sadiqabad » e
Y Liagatpur Flood Vulnerablllty Index

/ Lower Higher
Map 5.2: FVI aggregated to Tehsils (The top 10 Tehsils with the highest flood-prone score are labelled). (,] 5,0 ‘9“ km
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Flood Vulnerability Index interpolated per 50 km?

A hexagon grid-based mapping

approach was used to avoid reliance

on administrative boundaries,
recognizing that climate hazards cross borders.
Using zonal statistics and kriging interpolation, the
FVI was aggregated and visualized in a smooth,
continuous pattern.

A 50 km? hexagon grid was used to map flood
vulnerability highlighting critical vulnerability areas
across the region.

7/ Border to India
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Map 5.3: FVI interpolated with a resolution of 50 km?. 0 50 100 tem

Flood Vulnerability Index interpolated per 10 i’

Y Afiner 10 km? hexagon grid provided
~ amore detailed view, enabling high-
resolution spatial analysis and the
identification of local vulnerability hotspot.
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Map 5.4: FVI interpolated with a resolution of 10 kmZ. [.] 5.0 ][.]D ki
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Flood Vulnerability, a notistic view of FPc, psc, and cec

.| Thebackground indicates flood-prone
P (FPC) areas, while the half circles
provide insight into human exposure
(PSC, CCC). Tehsils with the highest FVI value are
labeled with their first three letters.

Altough flood-prone is high in the area of Lahore,
the population suspectibility is low, as well as the
coping capacity is high - making it less flood
vulnerable.

How to read

- Lower Population Susceptibility,
W7 higher Coping Capacity.

. Higher Population Susceptibility,
" less Coping Capacity.

777 Borderto India
[ Tehsil

——=Major River

Jalalpur Pirwala has the highest FVI value. The
area, as well as its adjocatning areas, are high in
flood-prone.

Flood-Prone

Lower Higher

Population Susceptibility

A Higher
-

-
- Lower

Coping Capacity

- Lower
w

0 50 100 km w

L A J

W Higher

Map 5.5: Flood vulnerability splitted into its three components (The top 10 Tehsils with the highest FVI score are labelled).
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Flood Vlllnerah“ity, a holistic view at FPC and people’s vulnerability

The background represents flood-

prone (FPC) areas in Punjab,

calculated using a 100 km?
hexagonal average and interpolated for a smoother
representation. Wurman dots indicate the
population at risk, derived from the average of 100
km? hexagons and calculated by dividing
population susceptibility (PSC) by coping capacity
(CCC).
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Map 5.6: Flood Vulnerability; FPC in the background, and Wurman dots show PSC/CCC.

Flood Vlllnerahilitv per 10 km?

Afiner 10 km? hexagon grid provided

amore detailed view, enabling high-

resolution spatial analysis and the
identification of local vulnerability hotspot. The
estimated number of people affected is also

Vulnerability of people

visualized. Here at the hotpot region of Jalalpur % = 5 (@ g g g
Pirwala. 2 XA
= Yelalelele
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Map 5.7: Flood Vulnerability; FPC in the background. Wurman dots show PSC/CCC, the color indicates people affected.
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Discussion

The master's thesis deals with the flooding problem
in Pakistan. The Punjab province was chosen as a
study area, as this region is prone to flooding and
people are yearly affected. To address these issues,
the study developed a framework that aims to
analyze the area with a multi-layer approach. In
contrast to Ullah et al. (2024), this research not
only concentrates on the identification of flood-
prone areas but also takes the population into
account. This Flood Vulnerability Index (FVI)
framework consists of three components: the
Flood-Prone Component (FPC), the Population
Susceptibility Component (PSC), and the Coping
Capacity Component (CCC). By integrating
demographic and adaptive capacity factors, the
study delivers insights that were not considered in
previous studies in the Punjab region. Although the
use of geospatial technigues, the Analytical
Hierarchy Process (AHP), and the creation of user-
friendly visualizations offer a practical way to
evaluate the risk of flooding, some limitations must
be considered. There are also some methodological
points that must be discussed, which might have
influenced the outcome of this study. Also,
improvements are worth mentioning, which might
pave the way for future research,

Data Sources, Processing, Resolution,
Validation, and Scaling Issues

One thing that stood out was the huge study area,
which has advantages and disadvantages. It has the
benefit that a large area is covered by the
assessment, but the analysis might not be able to
capture small nuances. Classification of some
parameters might be generalized, as the study
areas are characterized by different topographic
conditions. For example, Punjab reaches from high
mountains in the north to flat terrain in the south.
This results in a large range of values (e.g., meters
in the Elevation), which can influence the

classification and therefore, the outcome of the
study. Nevertheless, the analysis provides general
patterns of flood vulnerability. The determined
hotspots can serve for future studies to analyze the
most affected areas in greater detail. Future
researchers can build on the results of this study
and include data with higher resolution and more
precise information in smaller and more localized
study areas, as described below.

Existing limitations in the data and the processing
must be discussed. The data for the health facilities
and the rivers were obtained from OpenStreetMap
(OSM). Although this data is freely available, the
information is provided by users, and inaccuracies
and gaps can occur. While Kablan et al (2017) uses
census data based on sub-district level, the study
uses a dasymetric mapping technique to enhance
the data's localization of the PSC and the CCC.
Future studies that might have access to data on
the house survey level would provide better
accuracy than the technigue used in this study.
Although the dasymetric mapping technique
masked the census data to settlements, so as a
proxy for where people live, each pixel in the
administrative value still has the same value.
However, as more precise data was not available,
this technique still provided better precision in the
FVI calculation than if the data had not been
masked out. Had this not been done, each pixel of
the whole administrative boundary would have had
one pixel and would have distorted the results. The
availability and up-to-date population data would
improve future studies. As future studies might
focus on smaller areas, highlighted as endangered
areas in this study, it might be easier to obtain this
data.

Resolution and the scaling of the data also have to
be added to the consideration. All layers were

scaled to 30m to guarantee consistency between
the parameters. Although the 30m matched the
resolution of the DEM, the Sentinel-1and the Land
Use Land Cover data had to be downscaled. Finer
resolution of data might improve the accuracy of
the study because smaller nuances in the
topography might be captured. However, as
discussed earlier, given the large study area, these
nuances could be absorbed, and hence, higher
resolution might be considered for smaller study
areas. Furthermore, the use of 30m gives a good
balance of computational efficiency and spatial
resolution. What really has to be pointed out here is
the precipitation data. This data was available with
a resolution of 4 km and had to be upscaled. The
data was processed with interpolation and
resampling, that it matches the 30m and ensures
consistency between the data sets. Therefore, this
coarse resolution might have gaps which might be
important in some local conditions and cannot be
excused by the size of the study area.
Nevertheless, it provided general patterns of the
annual rainfall in the province. Despite the available
resolution, rainfall is a driver of flooding (Bates et
al., 2008), and hence, it should not be neglected,
as it gives crucial information about where most
rainfall fell.

Furthermore, methodological limitations exist. As
the AHP s rated based on opinion, it is rated with
subjectivity. The low consistency ratio of below 0.1
suggests consistency, but a different group of
experts might assign different relative importance
to the parameters. The robustness of the AHP
could be assessed with Sensitivity Analysis (Ullah
etal., 2024). A single-parameter sensitivity
analysis (SPSA) could be performed to evaluate
how each parameter layer influences the FVI,
providing valuable information about their impact.

While the map removal sensitivity analysis (MRSA)
might assess the significance of each parameter
when each layer is systematically removed at a
time to determine whether significant changes
oceur in the model output. Moreover, the
classification of the parameters was mostly based
on literature and interval methods. Precise
adjustment of the indicators based on fieldwork or
discussion with locals might enhance the model
further.

Another point worth mentioning is the limitations in
the validation process. The result of the FPC was
validated with multiple flooding extents derived
from Sentinel-1 covering five years. Adding more
years to the validation step might improve the
representation of the flood-prone analysis and the
validation result. Furthermore, validating the whole
FVIresults would provide valuable information
about the model's reliability. Similar to Hoque et al.
(2019) the results of the FVI could be evaluated by
people in the study area. Based on a survey, people
affected and the experts from Pakistan who rated
the AHP would give important feedback on the
accuracy of the model's mapping result.

Mapping Approaches, FVI, and User
Testing Feedback

While Hoque et al. (2019), Ullah et al. (2024), Roy
and Dhar (2024), and Mshelia et al. (2024)
produced raster-based maps for visualizing flood-
prone and vulnerable areas, this study developed
different mapping approaches for visualizing flood
vulnerability. The user testing concluded that the
FVI aggregated to the Tehsils is easier to
understand and good for comparing regions with
others. However, it also created artificial
boundaries. The interpolated FVI might be more
precise, but different resolutions should be
provided because data could be lost, or misleading

information could be added in the interpolation
step. One thing that stood out is that mapping the
components separately gives more insight into
vulnerability, but it is more complex to understand.
Although different visualization approaches offer
various ways of reading the analyzed vulnerability,
the formula-based method needs some discussion.
A challenge that emerged here is that the FVI
model uses different dimensions. While the FPC
covers the whole area, the PSC and CCC cover
pixels where settlements are located. Thus,
visualizing the components separately gives the
possibility to avoid this problem. The pie charts,
half-circles, and the Wurman dots present a good
way of combining the thematic content and at the
same time deliver important information about
their interplay in flood vulnerability in the
respective areas.

The user testing was conducted with a relatively
small sample size (n=16), and no user from Punjab
was included. Different user groups are important
in the user testing. While the climate risk analyzers
gave feedback on technical aspects, the user of the
general public ensured that the maps are also
understandable for a broader audience. Also, if they
are usually not in touch with such topics. Hence,
adding an additional user group might enhance the
findings. Cartographers will observe the maps with
their professional perspective and provide
information on cartographic rules. Peaple in Punjab
could be added to the general public group. They
might look at the maps more specifically, due to
their experiences, and different findings can be
collected. Furthermore, only five maps were
included in the user testing. Future studies, that
also put effort into visual creation, might test the
whole product. While the atlas was not tested in
the user testing, the layout was discussed with
experts in the atlas creation to ensure its

correctness.

Overall, the mapping approaches were well
received. Especially, the feedback from climate risk
analysts was valuable, as they usually work with
GIS outputs and pixel maps. They emphasize how
important it is to find new ways of communicating
and presenting the results. This study contributes
to their research and can be directly used in flood
management. Furthermore, the feedback
highlighted a clear legend and additional text on
how the data was processed and mapped. The user
testing ensured that the final results are accurate,
accessible, and understandable not only for
decision makers but also for the public. Although
the aggregation process from pixel maps to vector-
based maps increases the readability, it also
generalizes the results. Future studies might
search for different mapping approaches or might
focus more on the creation of an interactive pixel
map. However, as the study's main focus lay in
visualizing maps which are easy to understand and
tointerpret, the study's approach is still
appropriate.
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Conclusion

This study was motivated by the flood-danger in
Punjab and the research gap which exists in the
area. This issue was addressed in two parts. Firstly,
flood vulnerable areas were identified and analyzed.
For this, the study developed a Flood Vulnerability
Index (FVI) which integrates various physical and
environmental factors, and demographic and
coping capacity parameters. Geospatial tools and
an Analytical Hierarchy Process (AHP) were
combined. The use of FVI's three components the
study offered a multi-dimensional perspective of
flood vulnerability. Secondly, the results obtained
were visualized with different mapping approaches.
The different visualization techniques were
compiled to an atlas, making the results not only
accessible for decision-makers, but also for a
broader audience.

The atlas is not only a summary of the findings but
also a practical product that translates the complex
flood vulnerability assessments into accessible and
clear visualizations. By following cartographic best
practices and user-centered design principles, the
atlas ensures that the information is
understandable for diverse user groups, including
authorities, researchers, and the general public. It
supports decision-making processes and
contributes to more effective communication about
flood risk in Punjab.

The study followed a structured workflow for
geospatial analysis and mapping creation. First,
literature research on flooding was conducted and
indicators identified. Seven parameters frame the
Flood-Prone Component (FPC), including the
Annual Rainfall, Distance to the River, Drainage
Density, Elevation, Land Use Land Cover, Slope, and
Topographic Wetness Index. Secondly, the
Population Susceptibility Component (PSC)
consists of four indicators, such as the Dependent

Population, Disabled Population, Female
Population, and Population Density. Lastly, two
parameters, the Distance to Health Facilities and
the Literacy Rate, create the Coping Capacity
Component (CCC). This data was obtained from
various open-data sources and platforms, such as
Sentinel-1, ESA WorldCover, FABDEM, and
OpenStreetMap. For every parameter a map was
created, classified into 5 categories ranging from
very low to very high, and weighed based on
experts’ opinion with the AHP. The participants
consisted of eight experts in Pakistan and five
climate risk analyzers from the United Nations
University - Institute for Environment and Human
Security (UNU-EHS). Pairwise comparison
matrices helped with detecting the influence of
each parameter. Furthermore, the consistency was
determined. Each component map was then
generated with an overlay analysis.

The research delivered methodical and thematic
contributions to geospatial flood mapping.
Furthermore, valuable results for the study
program of geoinformatics, earth observation,
geovisualization, and geocommunication were
obtained. The FPC identified flood-prone areas,
which lay generally in flat terrain near river basins.
The PSC and the CCC determined regions where
human susceptibility is high and coping capacity is
lacking. However, the most important result of the
study is the FV! itself and the different maps.
Therefore, another contribution lies in the
cartographic results. The different mapping
approaches used, combined with the user testing,
delivered valuable insights on how to create maps
which are easy to understand while providing the
required level of detail for decision making. The
atlas created in this thesis thus provides legible
visualization and tools for decision-making which
are also understandable by non-experts.

At the same time, the study also delivers thematic
contributions to the assessment and strategies for
flooding. Using climate and environmental
parameters, such as precipitation and elevation, the
study not only determines current but also future
flooding scenarios. By integrating population
susceptibility and coping capacity, the study also
offers another perspective of how the population
might be affected. The major benefit of this study
lies in the methodology which can be scaled to
another region of the world. All data in this study
was open access. If some data might be limited or
not available, the FVI can be adopted for the
respective area. Future study can build on the FVI
framework to analyze flood vulnerabilities,
especially when taking the limitations and
improvements into account considered in Chapter
8.1f data is available, information about housing
quality, economic status and access to resources
can draw a clearer picture of flood vulnerability.
Taking these limitations and improvements into
consideration, and adopting the framework to the
study area, this study's methodology supports
long-term climate planning and the analysis of risk
induced by climate.

[n summary, this study achieves its aims and

delivered a useful contribution to flood assessment;

especially its visualizations. The study not only
deals with the methodical possibilities of mapping
but also provides practical tools. The integration of
geospatial analysis, with visual user-centered
design enhances the potential of the study to serve
as amodel for future studies. The printed atlas and
the digital product can help with decision making
and to make communities more resilient and
contribute to flood management and climate
adaptation globally. While climate-related
catastrophes arise and millions of people get
affected, the need for frameworks like the study’s
grows too. Combining open access data, geodata
data and user-centric design research is getting
more and more important for building strong
communities and to be prepared for the climate
induced challenges we already face, and we will
face in the coming years.
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Flooding is one of the most destructive natural disasters, especially in regions with high population density like
Punjab, Pakistan. This atlas presents a flood vulnerability framework, combining physical, environmental, and
sogial factors to assess flood vulnerability and the impact on communities.
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Message from the Author

This atlas was compiled as part of my master's thesis ‘Flood Vulnerability in Punjab, Pakistan: A Geospatial
Analysis and Cartographic Approach’. Floods are one of the most severe catastrophic events, demanding
human lives, leading to displacement, and the destruction of homes, infrastructure, and livelihoods.

Climate change exacerbates the frequency and intensity of such hazards - not only floods, but also others, such
as droughts, sea level rise, and wildfires. While climate change is a global issue, it mainly affects the Global
South. Millions of people are already forced to migrate due to hunger, conflict, and environmental collapse.
Everyone has the right to a safe, dignified life - something many of us take for granted because of the
privileges we have been given.

| believe climate change is one of the greatest challenges of our era - and we are running out of time.

One of the barriers we face is the narrow-mindedness, denail, and indifference, especially those who think they
are not affected. But we are all connected, and the suffering of others is not something we can afford to ignore.
The geospatial analysis was conducted, maps were created, and the atlas was compiled to support flood
mitigation in Punjab, Pakistan, but also to raise awareness of climate impacts globally, through the lens of
flooding. My hope is that it fosters understanding, empathy, and action.

Let us stop thinking only of ourselves, and instead be open to others - regardless of where they come from,
their ethnicity, impairment, gender, sexual orientation, religion, or any other characteristics that make them
who they are. We all share this planet, and we must care for it - and for each other - together.

Gernot Nikolaus
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